42 research outputs found

    Real-time synthetic primate vision

    Get PDF

    On Real-Time Synthetic Primate Vision

    Get PDF
    The primate vision system exhibits numerous capabilities. Some important basic visual competencies include: 1) a consistent representation of visual space across eye movements; 2) egocentric spatial perception; 3) coordinated stereo fixation upon and pursuit of dynamic objects; and 4) attentional gaze deployment. We present a synthetic vision system that incorporates these competencies.We hypothesize that similarities between the underlying synthetic system model and that of the primate vision system elicit accordingly similar gaze behaviors. Psychophysical trials were conducted to record human gaze behavior when free-viewing a reproducible, dynamic, 3D scene. Identical trials were conducted with the synthetic system. A statistical comparison of synthetic and human gaze behavior has shown that the two are remarkably similar

    Improving the health forecasting alert system for cold weather and heat-waves in England: a proof-of-concept using temperature-mortality relationships

    Get PDF
    Objectives In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office’s (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. Method The prototype health forecasting alert system introduces an “impact vs likelihood matrix” for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. Conclusions The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use

    Drivers and subseasonal predictability of heavy rainfall in equatorial East Africa and relationship with flood risk

    Get PDF
    Equatorial East Africa (EEA) suffers from significant flood risks. These can be mitigated with pre-emptive action, however currently available early warnings are limited to a few days lead time. Extending warnings using subseasonal climate forecasts could open a window for more extensive preparedness activity. However before these forecasts can be used, the basis of their skill and relevance for flood risk must be established. Here we demonstrate that subseasonal forecasts are particularly skillful over EEA. Forecasts can skillfully anticipate weekly upper quintile rainfall within a season, at lead times of two weeks and beyond. We demonstrate the link between the Madden-Julian Oscillation (MJO) and extreme rainfall events in the region, and confirm that leading forecast models accurately represent the EEA teleconnection to the MJO. The relevance of weekly rainfall totals for fluvial flood risk in the region is investigated using a long record of streamflow from the Nzoia river in Western Kenya. Both heavy rainfall and high antecedent rainfall conditions are identified as key drivers of flood risk, with upper quintile weekly rainfall shown to skillfully discriminate flood events. We additionally evaluate GloFAS global flood forecasts for the Nzoia basin. Though these are able to anticipate some flooding events with several weeks lead time, analysis suggests action based on these would result in a false alarm more than 50% of the time. Overall, these results build on the scientific evidence base that supports the use of subseasonal forecasts in EEA, and activities to advance their use are discussed

    Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    Get PDF
    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007-2013) under Grant 238366. R.B., R.K., R.D., A.W., and P.D.F. were supported by the Joint Department of Energy and Climate Change/Department for Environment, Food and Rural Affairs Met Office Hadley Centre Climate Programme (GA01101). A.I. and K.N. were supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project (CMIP), and we thank the climate modeling groups responsible for the GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M models for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work has been conducted under the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The ISI-MIP Fast Track project was funded by the German Federal Ministry of Education and Research (BMBF) with project funding Reference 01LS1201A.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.122247711

    Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays

    Get PDF
    Derivatives of thymine have been extensively used to promote supramolecular materials assembly. Such derivatives can be synthetically challenging to access and may be susceptible to degradation. The current article uses a conformer-independent acceptor-donor-acceptor array (ureidopyrimidine) which forms moderate affinity interactions with diamidopyridine derivatives to effect supramolecular blend formation between polystyrene and poly(methyl methacrylate) polymers obtained by RAFT which have been functionalized with the hydrogen bonding motifs

    A Real-World Vision System: Mechanism, Control and Vision Processing

    No full text
    This paper reports on the development of a multi-purpose active visual sensor system for real-world application. The Cable-Drive Active-Vision Robot (CeDAR) has been designed for use on a diverse range of platforms, to perform a diverse range of tasks. T

    A Reactive Vision System: Active-Dynamic Saliency

    Get PDF
    We develop an architecture for reactive visual analysis of dynamic scenes. We specify a minimal set of system features based upon biological observations. We implement feature on a processing network based around an active stereo vision mechanism. Active rectification and mosaicing allows static stereo algorithms to operate on the active platform. Foveal zero disparity operations permit attended object extraction and ensures coordinated stereo fixation upon visual surfaces. Active-dynamic inhibition of return, and task dependent biasing result in a flexible, preemptive and retrospective system that responds to unique visual stimuli and is capable of top-down modulation of attention towards regions and cues relevant to tasks
    corecore